Зачастую чтобы найти сгоревшую деталь в схеме или обрыв проводника, требуется как минимум «прозвонка» отдельных цепей и их элементов. Эта задача неразрешима без омметра. Наряду с вольтметром и амперметром (в составе мультиметра) он вносит свою посильную помощь в работу мастера.
До изобретения омметра делались небезуспешные попытки создать чувствительный к малым токам гальванометр. Основоположником теории, лёгшей в основу принципа действия современного омметра, стал Георг Ом.
Он подключил стрелочный гальванометр к батарее последовательно через резистор, имеющий конечное сопротивление R, и выяснил, что сила тока линейно зависит не только от напряжения батареи, но и от величины сопротивления, которое этот ток преодолевает.
Закон Ома, открытый учёным в 1826 году – основа электробезопасности и работы омметров.
Впоследствии работа омметра была доработана другим физиком-изобретателем – Чарльзом Уитстоном. Тот включил гальванометр в диагональ резисторного моста. Дополнительные резисторы равны по значениям Ra и Rb.
Ток, проходящий по гальванометру – нулевой, если измеряемое (Rx) и «шаблонное» (Rs) сопротивления равны. В 1843 году Уитстон опубликовал свою статью об этих опытах.
С тех пор омметр стал полноценным измерительным прибором.
Назвать изобретателя вольтметра так и не удалось бы. Идея эта основана на законе Ома. С десяток учёных в XIX-XX вв. приложили усилия к модернизации аналогового омметра – вклад каждого из них бесценен.
Сегодня любой человек, хорошо знакомый с физикой и электрикой, строит аналоговый омметр на базе стрелочного миллиамперметра. Килоомметр строится на базе микроамперметра или милливольтметра, а мегаомметр – на базе вольтметра, гига- и тераомметр – на базе килоомметра.
Недостаток омметров, измеряющих сопротивление от долей ома до одного килоома – существенное потребление тока батарейки в 1-3 ампера в час (время, в течение которого щупы замкнуты накоротко). Это вынуждает пользователя применять аккумулятор.
Для правильной градуировки прибора по омической шкале в цепь включается калибровочный переменный резистор.
Омметр включает в себя:
- стрелочный гальванометр;
- источник стабилизированного питания (в простейшем случае – аккумулятор);
- магазин сопротивлений, переключаемый на нужное с помощью многопозиционного переключателя;
- шунт (для измерения сопротивления менее 1 Ом);
- переменный резистор, настраивающий «ноль» перед началом измерений;
- разъёмы для коннекторов, к которым присоединены провода с шупами на другом конце;
- выключатель питания батарейки во избежание случайного соприкасания щупов и утечки её заряда.
Калибровочных резисторов может быть два – один подстраивает ноль грубо (быстро), другой – в десятки раз более точно.
Калибровка нужна, так как со временем аккумулятор разряжается, понижая своё напряжение на выходе под нагрузкой (замкнутые накоротко или измеряемые эквивалентным сопротивлением щупы). Она занимает 1-3 секунды.
Вся сборка помещена в ударопрочный корпус. Для удобства снятия показаний гальванометр чаще всего монтируют в корпусе в «лежачем» или «полулежащем» положении.
Важнейшими характеристиками омметра считаются:
- точность (класс точности);
- напряжение (ЭДС) питания батарейки или аккумулятора;
- габариты и вес (носить с собой омметр, не помещающийся в кармане, неудобно);
- ударо- и виброзащищённость (предусмотрены амортизирующие вставки из резины).
Из последнего следует, что бросать и трясти прибор нельзя. Стрелочный гальваномер имеет измерительную головку, уязвимую к виброударным воздействиям.
При сильном ударе у стрелки может сломаться противовес – балансир, без которого её конец задевал бы за шкалу.
В ряде случаев повреждается и возвратная пружина – плоская упругая спираль, возвращающая стрелку на нулевое деление после размыкания замеряющей цепи.
Принцип действия прибора для измерения сопротивления заключается в следующем. В схему подключения цепи гальванометра включён переменный резистор и батарейка (или аккумулятор). По закону Ома малое сопротивление и большой ток уравновешены, и наоборот. Нулевое значение омметра находится не слева, как у вольтметра или амперметра, а справа.
Шкала проградуирована «задом наперёд». Деления шкалы расположены таким образом, что визуальное расстояние на шкале для одного и того же интервала сопротивлений снижается. Например, делания располагаются справа налево в следующей последовательности: 0, 1, 2, 5, 10, 20, 50, 100, 500 Ом, 1 кОм, 5, 25, 200 кОм и «бесконечность».
Последний символ – крайнее левое положение стрелки.
При замкнутых щупах (включение цепи) резистор крутят до тех пор, пока стрелка прибора не остановится на условном нуле омметра. Это снизит потребление тока прибором до значений миллиамперметра, измеряющего ток короткого замыкания в маломощных цепях. Теперь можно измерить искомое сопротивление.
По диапазону сопротивлений омметры подразделяются на:
- микроомметры – измерение сопротивления до 1 мОм;
- Милли омметры – до 1 Ом – применяются для оценки шунтов;
- Омметры – до 1 кОм – применяют для позванивания линий, обмоток, электро спиралей, диодов, транзисторов и других элементов;
- Кило омметры – 1000 Ом – 1 МОм;
- Гигрометры – до 1 ТОм, используются для оценки исправности изоляции и других не теплопроводящих сред.
Тераомметры применяются уже для оценки среды, разделяющей сильно удалённые друг от друга проводники. Условно сопротивление диэлектрика стремится к бесконечности. Сопротивление вакуума уже является таковым.
Не все омметры питаются от 1,5-9 вольт. Некоторые, к примеру, М-371, используют внешнее стабилизированное питание на 120 В. Существуют и иные особенности – например, вращающаяся шкала и неподвижный маркер-стрелка у омметра М-416. На все современные омметры действует ГОСТ 8.409-81, обновленный 1 июня 2019 года.
По варианту исполнения это переносные и настольные (стационарные) устройства. Они отличаются габаритами. Например, профессиональный высокоточный омметр для электро испытательных лабораторий весь срок службы проработает в одном помещении. Примером здесь является щитовой прибор. А мобильный мультиметре можно носить с собой в кармане.
Узкоспециализированные омметры классифицируют особо.
Это всем известный стрелочный мультиметр. Он обладает стрелочным интерфейсом.
Может быть усложнён – при замерах прибор конвертирует полученное значение сопротивления в напряжение, по закону Ома прямо пропорциональное ему.
Выполнение этой стадии возложено на специальный узел в схеме омметра – операционный усилитель. В итоге на шкале омметра указывается искомое значение сопротивления.
Цифровой омметр содержит специальный измеряющий мост, уравновешиваемый по сопротивлению с помощью управляющей автоматики. В роли последней выступает отдельный микроконтроллер. Резистор, подключаемый к щупам прибора, даёт сигнал контроллеру через мост, и тот выставляет нужные значения равновесия моста.
Затем данные обрабатываются в микропроцессоре программой, считанной из микросхемы ПЗУ, поступают в оперативную память и отображаются на дисплее.
Полученное значение может быть передано с помощью внешних интерфейсов – по беспроводной или проводной сети передачи данных, считано и сохранено специальной программой на ПК, смартфоне или планшете пользователя.
Такой омметр основан на магнитоэлектрической системе. Его основа – магнитоэлектрический измеритель. Он включается последовательно в цепь, сопротивление которой измеряется в данный момент. Интервал измеряемых значений – от 100 Ом до 10 МОм. В них измеряемое сопротивление и источник питания включены последовательно.
Для запитывания всей цепи достаточно батарейки на 1,2-9 Вт. При использовании магнитоэлектрического измерителя в качестве мегаомметра может потребоваться напряжение до 120 В. Если же измеряемое сопротивление составляет всего до нескольких Ом, то резистор подключается параллельно, а не последовательно. Напряжение на омметре упадёт.
Показанное значение и будет искомым сопротивлением. Недостаток – быстрый разряд батарейки.
Основа такого омметра – магнитоэлектрический логометр. Система построения – та же, что и у предыдущего типа. Диапазон измерений – 1-1000 МОм.
Логометры работают на базе вычислений соотносящихся друг с другом сопротивлений. Результат такой работы – поиск оптимального (необязательно среднего) значения. Оно, в свою очередь, и указывается на шкале прибора.
В качестве источника постоянного тока используется не батарейка, а ручной генератор.
Кроме наименований по измеряемому диапазону сопротивлений (от микро-до тера омметра), в общую классификацию также выделен измеритель сопротивления заземления. Также омметры маркируются по системе, на которой они основаны.
- Мхх – магнитоэлектрические омметры.
- Фхх, Щхх – чисто электронные измерители сопротивления. В первом случае примером служит прибор М4100, во втором – Ф4104-М1.
- Е6-хх омметры, промаркированные по ГОСТу №15094. Пример – измеритель Е6-13А.
Измерению сопротивления резистора предшествуют две причины.
- Вы не знаете цветомаркировку современных резисторов. У вас нет под рукой таблицы полосок, по которым считается сопротивление.
- Резистор старый – с него стёрлись, облупились какие-либо опознавательные знаки. Он много раз перепаивался либо хранился в условиях агрессивной к краске среды.
Разомкнутые щупы – это разрыв питания цепи прибора, в который включается резистор с измеряемым сопротивлением. Если речь идёт о сопротивлении от десятков кОм и выше – касаться руками выводов резистора (и контактов щупов) нельзя.
Кожа человека хоть и имеет достаточно большое сопротивление, не изолирует внутренние органы и ткани человека, содержащие электролиты (соли, кислоты), в разной мере проводящие ток. Это вносит большую погрешность в измеряемое сопротивление.
Если руки смочить, то сопротивление тела человека станет ещё меньше.
Омметр должен быть включён и откалиброван. Возьмите резистор за его основную часть и приложите его выводы к щупам, не касаясь их. Если вы замеряете сопротивление в уже готовой схеме – отключите на этом устройстве питание.
Напряжение батарейки (или аккумулятора), установленной в омметре, суммируется с напряжением, падающим на измеряемом резисторе работающего устройства – по закону сложения напряжений при последовательном соединении элементов.
В результате прибор «шкалит» в ту или иную сторону, и вменяемого замера вы не получите. При напряжении в десятки вольт, гасимом на замеряемом сопротивлении, стрелка может быть с силой отброшена в любой из концов шкалы.
Это может сломать как саму стрелку, так и её пружину с балансиром.
Если схема устройства сложна – в ней присутствуют электронные компоненты, содержащие диоды, транзисторы и микросхемы, то необходимо выпаять резистор, годность которого проверяется.
Дело в том, что полупроводники, из которых выполнены все эти элементы, при пропускании тока в одну из сторон также имеют конечное сопротивление до десятков Ом. Руководствуйтесь принципиальной схемой ремонтируемого устройства.
Здесь требуются хорошие знания по физике, электро- и схемотехнике, без которых вас не допустят к ремонту электроники.
В цифровых омметрах (мультиметрах) есть схема электронной защиты и предохранитель, защищающие прибор от воздействия опасного напряжения.
Повредить такой омметр можно лишь с помощью напряжения в сотни и тысячи вольт, «пробивающего» микроконтроллер прибора. После такого воздействия мультиметра восстановлению не подлежит.
Обязательно отключите питание устройства, на котором оценивается состояние резистора, катушки или обмотки двигателя.
О том, как правильно пользоваться омметром, смотрите в следующем видео.
Омметр
Радиоэлектроника для начинающих
Стоит открыть любой учебник по электротехнике и сразу выясняется, что практически все электротехнические величины названы в честь великих физиков прошлого: Вольт, Ампер, Генри, Ом, Фарада, Тесла, Герц. Конечно, обидно, что российских физиков в этом списке нет.
Немецкий физик Георг Ом первый ввёл понятие сопротивления. В его честь единицу измерения сопротивления стали называть «Ом». Эта величина изображается греческой буквой омега – Ω.
Раньше радиоэлементы так и назывались «сопротивление» и лишь много позже в обиход вошло слово резистор. До введения маркировки с помощью цветных полосок все необходимые данные наносились непосредственно на корпус резистора.
В технической литературе можно встретить такие обозначения: килоом и мегаом, что означает соответственно тысяча ом и миллион ом. На принципиальных схемах рядом с обозначением резистора можно встерить надписи: 4К7 – четыре и семь килоома (4,7 кОм) или 1М2 – один и два мегаома (1,2 МОм).
На зарубежных схемах «Ом» пишется как «Ohm».
Для измерения сопротивлений используется прибор, который называется Омметр. Приборы, измеряющие только сопротивление, в радиолюбительской практике обычно не используются. Такие высокоточные приборы применяются на заводах выпускающих резисторы для определения номинала с определённой погрешностью или в научно-исследовательских лабораториях.
Зато все знают такое понятие как тестер или мультиметр. Такие приборы объединяют в себе вольтметр, амперметр и омметр + ещё функционал дополняется возможностью проверки диодов или же измерения температуры. Всё зависит от стоимости и исполнения прибора. Мультиметры бывают стрелочные и цифровые. Каждый из них имеет свои особенности, достоинства и недостатки.
На принципиальных схемах омметр обозначается следующим условным графическим обозначением.
Стоит понимать, что так обозначается прибор целиком. В реальности же омметр также собран из достаточно большого количества радиодеталей, и его принципиальная схема включает в себя немалое количество элементов. Данное условное обозначение применяется в основном для того, чтобы показать, на каком участке схемы и каким прибором необходимо проводить измерение. Вот пример.
Здесь на схеме показано, как нужно замерять сопротивление звуковой катушки динамика. Из схемы видно, что кроме омметра (измерительного прибора) и самого динамика ничего не нужно.
Как уже говорилось, омметр, как правило, входит в состав мультиметра. Исключение составляют только узкоспециализированные и высокоточные приборы для измерения сопротивления. Они стоят довольно дорого и их могут позволить себе только крупные фирмы и исследовательские лаборатории.
Омметр в составе тестера-мультиметра используется как вспомогательный. Прежде всего, им можно проверять исправность транзисторов и диодов, а при небольшом навыке стабилитронов и тиристоров. Омметр незаменим при поиске самых главных неисправностей электронных схем:
- Короткое замыкание, где его быть не должно.
- Обрыв там, где должна быть замкнутая цепь.
Конечно, омметром проверяются обмотки трансформаторов, электродвигателей. Несложно проверить электролитические конденсаторы большой ёмкости, но только на исправность. На утечку проверить электролит не удастся.
О стрелочных измерительных приборах…
Стрелочные приборы в настоящее время применяются редко ввиду большой погрешности, ограниченной функциональности и необходимости расчёта результатов показаний. Кроме того, стрелочные приборы время от времени требуют калибровки.
Стоит отметить, что стрелочные омметры устроены проще своих цифровых собратьев. Ранее, ещё до широкого распространения цифровых мультиметров, в ходу у радиолюбителей были так называемые авометры.
Авометр – это стрелочный многофункциональный прибор, который в одном корпусе объединяет три прибора для измерения основных электрических величин: амперметр – измеряет силу тока, вольтметр – измеряет напряжение и омметр – измеряет сопротивление. Как видим, название авометра происходит от названий тех приборов, которые входят в его состав.
Стоит отметить, что для стрелочных приборов, таких как амперметр и вольтметр не нужен источник питания (батарейка), а омметр обязательно требует наличие батареи питания.
Дело тут в том, что стрелочные приборы амперметр и вольтметр измеряют такие величины, как ток и напряжение на рабочих, включенных приборах. И именно поэтому им не нужен свой собственный источник питания, так как энергию для отклонения указательной стрелки они получают от участка схемы, на котором проводится замер электрических величин.
С омметром другая история. Омметр замеряет сопротивление. Но замерить сопротивление участка цепи, которое находиться под рабочим напряжением нельзя. Можно лишь замерить ток и напряжение на участке цепи и с помощью закона ома вычислить сопротивление этого участка. Думаю, с этим понятно.
Поэтому омметр используют лишь в тех случаях, когда нужно измерить сопротивление участка цепи или радиодетали при выключенном рабочем электропитании.
А для того, чтобы определить сопротивление какого-либо участка цепи или радиодетали, нужно пропустить через него пусть и небольшой ток, которого достаточно для отклонения стрелки стрелочного прибора.
Именно поэтому стрелочные вольтметры и амперметры могут работать и без батареи питания, но вот даже стрелочный омметр без батарейки работать не будет.
К недостаткам стрелочных приборов можно отнести достаточно большие габариты, необходимости калибровки, трудоёмкость при считывании показаний. Но, несмотря на это, и у стрелочных приборов есть свои преимущества.
Преимущество стрелочных приборов
Что можно сказать в пользу стрелочных измерительных приборов? А вот что. Как уже говорилось, стрелочный амперметр и вольтметр не нуждаются в источнике питания. Об этом весомом преимуществе вспоминаешь регулярно, когда в цифровом мультиметре наглухо садится батарейка
Современный мультиметр в обязательном порядке требует наличия батареи питания. Она нужна для того, чтобы питать микросхемы контроллера и дисплея, на котором отображаются результаты измерений.
В пользу стрелочных приборов можно отнести и то, что они имеют достаточно простое устройство. Это напрямую сказывается на ремонтопригодности таких приборов. Восстановить работу стрелочного прибора порой не так уж и сложно и дорого, в то время как восстановить современный цифровой мультиметр иногда просто невозможно.
Взглянем на внутренности цифрового мультиметра.
Прибор питается от батарейки типа «Крона» напряжением 9 вольт. Её, предохранитель и контроллер прибора видно при снятой задней стенке. Также видны контактные участки многопозиционного переключателя и другие элементы схемы.
Рассмотрим основные практические измерения с помощью популярного прибора DT-830B. Прибор представляет собой компактный универсальный мультиметр, позволяющий измерять постоянное и переменное напряжение, силу тока и сопротивление. Кроме того на панели прибора есть специальный разъём для проверки коэффициента усиления h21Э (hFE) маломощных транзисторов.
Практическая работа с мультиметром DT-830B
Прежде чем приступать к работе следует твёрдо запомнить одно правило. Независимо от того, что вы собираетесь мерить: ток, напряжение или сопротивление всегда необходимо начинать с максимального предела и поэтапно переходить на более низкие пределы измерения.
Пределы измерения омметра выглядят вот так.
На панели мультиметра DT-830B они ограничены зелёной линией. Прибор имеет 5 пределов измерений:
- 200 — на этом пределе измеряются сопротивления величиной до 200 Ом;
- 2000 — на этом пределе измеряются сопротивления до 2 килоом (2 кОм = 2000 Ом);
- 20k — на этом пределе измеряются сопротивления, величина которых не превышает 20 килоом (20 кОм = 20 000 Ом);
- 200k — предел для измерения сопротивлений до 200 килоом (200 кОм = 200 000 Ом);
- Ну, и наконец, 2000k — предел для измерения сопротивлений до 2 мегаом.
Если вы запутались в килоомах и мегаомах, и не знаете как определить, сколько это будет в омах, то добро пожаловать сюда. Там подробно рассказано о сокращённой записи численных величин.
Когда в режиме измерения сопротивления оба щупа разомкнуты, на индикаторе в старшем разряде высвечивается цифра 1, что означает бесконечно большое сопротивление.
А при замкнутых накоротко щупах на индикаторе высвечиваются три нуля. Это значить, что измерительная цепь коротко замкнута. Иногда самая правая цифра может быть 1 или 2 (на дисплее типа вот так 001 или 002). Это величина погрешности самого прибора. Она настолько незначительна, что ей можно пренебречь.
У профессиональных мультиметров, например В-38, которые используются в лабораториях, имеется потенциометр калибровки, с помощью которого можно установить > 0
Что измеряет прибор омметр: измерение сопротивления омметром
С давних пор в электротехнике и радиоэлектронике используются элементы, известные под названием сопротивления. Позднее, это наименование было заменено термином резистор. Все данные и характеристики наносятся на корпус резистора.
Поэтому, когда нужно ответить на вопрос, что измеряет прибор омметр, ответ не вызывает сомнений. Всем известно, что с помощью этих измерительных устройств определяется значение сопротивления. Тем не менее, данные приборы в чистом виде не используются в повседневной жизни.
Они обладают повышенной точностью и применяются в заводских условиях, для того, чтобы точно определить номинал выпускаемых резисторов.
Устройство и принцип действия омметра
Для обычных измерений существуют тестеры или мультиметры, соединяющие в себе функции амперметра, вольтметра и омметра. Отдельные конструкции этих приборов позволяют проверять диоды или измерять температуру. Устройства данного типа изготавливаются в цифровом или стрелочном варианте, каждый из которых обладает определенными достоинствами и недостатками.
До того, как появились универсальные приборы, непосредственное измерение сопротивления производилось с помощью омметра. Принцип действия данного устройства заключается в том, что в цепь самого магнитоэлектрического измерителя дополнительно включается резистор с переменным сопротивлением, а также источник постоянного тока в виде обычной батарейки.
Всем известно, что малое сопротивление напрямую связано с большим током и, наоборот. Поэтому, чтобы найти на шкале нулевое деление, производится короткое замыкание зажимов. При этом, движок резистора перемещается таким образом, чтобы отклонение стрелки было максимальным.
Находясь в таком положении, она будет означать нулевой показатель на шкале. После этого, к зажимам по очереди подключаются сопротивления с известным значением, которое отмечается на шкале.
В конечном итоге, появляется шкала, где каждая метка определенному значению тока и соответствующему сопротивлению.
Как пользоваться мегомметром
Отсчет полученных данных производится справа налево. В соответствии с законом Ома сила тока и сопротивление находятся в обратной пропорциональной зависимости. Поэтому, деления на шкале прибора нанесены неравномерно. Они сильно сжимаются в конце, где обозначены большие значения сопротивлений.
В омметрах, выпускаемых в заводских условиях, все основные детали расположены внутри корпуса, в том числе, источник тока и переменный резистор. Перед началом измерений, зажимы, подключаемые к сопротивлению, необходимо замкнуть, а стрелку с помощью движка резистора выставить на нулевую отметку. Это связано со снижением электродвижущей силы источника тока в процессе эксплуатации устройства.
Измерение сопротивления омметром
При ремонте электрических проводов, электро- и радиотехники, прежде всего, устанавливаются места возможных коротких замыканий. В этом случае сопротивление имеет нулевое значение. Если же в проводниках нарушен контакт, то показатель сопротивления будет стремиться к бесконечности.
На основании показаний сопротивления, омметр дает возможность точно установить поврежденные места. В особых случаях, он применяется не только для стандартных измерений.
С помощью омметра можно проверять другие измерительные приборы, измерять сопротивление изоляции, выполнять другие необходимые операции.
При проведении измерений нужно соблюдать основные правила:
- Проверяемые цепи должны быть предварительно обесточены.
- Переключатель устанавливается на минимальное значение.
- Работоспособность омметра проверяется путем соединения концов щупа между собой.
- Целостность цепи определяется по отклонению стрелки прибора.
Как работают электроизмерительные приборы
Омметр что это? Значение слова Омметр
Омметр (от Ом и…метр) прибор непосредственного отсчёта для измерения электрических активных (омических) сопротивлений. Разновидности О.: мегомметры, тераомметры, микроомметры, различающиеся диапазонами измеряемых сопротивлений. Изготовляют О. с магнитоэлектрическими измерителем и О. с магнитоэлектрическим Логометром. Действие магнитоэлектрического О.
основано на измерении силы тока, протекающего через измеряемое сопротивление при постоянном напряжении источника питания. Для измерения сопротивлений от сотен ом до нескольких Мом измеритель и измеряемое сопротивление rx включают последовательно. В этом случае сила тока I в измерителе и отклонение подвижной части прибора &alpha. пропорциональны: I = С&alpha. = U/(r0 + rx). &alpha.
= U/C (r0 + rx), где U — напряжение источника питания. r0 — сопротивление измерителя. При малых значениях rx (до нескольких ом) измеритель и rx включают параллельно. При постоянных U и C отклонение &alpha. зависит от rx и потому для облегчения измерений шкала измерителя может быть проградуирована в омах. Погрешность такого О. 5-10% от длины рабочей части шкалы. Часто О.
является частью комбинированного прибора — ампервольтомметра (см. Электроизмерительный комбинированный прибор). При необходимости более точных измерений в О. используется мостовой метод измерения (см. Мост измерительный). Для повышения чувствительности измерителя и точности измерений в таких О. применяют электронные усилители. С 60-х гг. 20 в. стали применять электронные О.
с цифровым отсчётом значения измеряемого сопротивления (см. Цифровой прибор), а также приборы, в которых предусмотрена возможность подключения к ЭВМ. Пределы измерений сопротивления у таких О. от 1 Мом до 100 Мом и выше. погрешность 0,01-0,05%. Лит.: Шкурин Г. П., Справочник по электро — и электронноизмерительным приборам, М., 1972. Справочник по электроизмерительным приборам, под ред.
К. К. Илюнина, Л., 1973. Е. Г. Билык.
Устройство и принцип действия омметра
Для обычных измерений существуют тестеры или мультиметры, соединяющие в себе функции амперметра, вольтметра и омметра. Отдельные конструкции этих приборов позволяют проверять диоды или измерять температуру. Устройства данного типа изготавливаются в цифровом или стрелочном варианте, каждый из которых обладает определенными достоинствами и недостатками.
До того, как появились универсальные приборы, непосредственное измерение сопротивления производилось с помощью омметра.
Принцип действия данного устройства заключается в том, что в цепь самого магнитоэлектрического измерителя дополнительно включается резистор с переменным сопротивлением, а также источник постоянного тока в виде обычной батарейки.
Всем известно, что малое сопротивление напрямую связано с большим током и, наоборот. Поэтому, чтобы найти на шкале нулевое деление, производится короткое замыкание зажимов. При этом, движок резистора перемещается таким образом, чтобы отклонение стрелки было максимальным.
Находясь в таком положении, она будет означать нулевой показатель на шкале. После этого, к зажимам по очереди подключаются сопротивления с известным значением, которое отмечается на шкале.
В конечном итоге, появляется шкала, где каждая метка определенному значению тока и соответствующему сопротивлению.
kolobok100500 › Блог › Как пользоваться мультиметром
Мультиметр также часто называют “мультитестером”, потому что он предназначен для снятия довольно широкого спектра показателей: измерение постоянного и переменного напряжения, сопротивления и силы тока.
Во многих мультиметрах также присутствует возможность измерения коэффициента усиления транзисторов и предусмотрен специальный режим для тестирования диодов, прозвонка цепи на короткое замыкание и т.д.
Одним словом — “мульти” (для многого) “тестер”.
Дорогие модели подобных измерительных устройств включают в себя и дополнительные функции: замера температуры (с помощью щупа-термопары), индуктивности катушек, емкости конденсаторов.
Учиться пользоваться мультиметром мы будем на примере бюджетного устройства китайского производства стоимостью в 10-15 долларов «XL830L», каким пользуюсь я.
В комплект его поставки входит набор простеньких “щупов” (красный и черный провода на фото выше), при помощи которых и производятся измерения. Их, по необходимости, можно заменить на более качественные или — удобные.
Примечание: будьте готовы сразу же чем-то (скотчем, изолентой) зафиксировать места входа обеих проводов в полые пластмассовые трубки-держатели. Дело в том, что проводники в трубках жестко не зафиксированы и при поворотах и изгибах “щупа” могут запросто оторваться (в силу крайне хлипкого припоя) возле основания измерительного наконечника.
Перед тем, как начать пользоваться мультиметром по полной программе — посмотрим на наш цифровой тестер поближе. В его верхней части мы видим семисегментное цифровое табло, которое может отображать до четырех цифр (9999 — максимальное значение). При разряде питающей батареи на нем появляется соответствующая надпись: «bat».
Под табло находятся две кнопки. Слева кнопка «Hold» — удержание показаний последнего значения (чтобы не держать в памяти при переписывании в блокнот). И справа — «Back Light» — подсветка экрана синим цветом (при замерах в условиях плохого освещения). С тыльной стороны на корпусе мультиметра имеется откидная ножка-подставка (для удобного размещения тестера на столе).
Питается цифровой мультиметр 9-ти вольтовой батарейкой типа «Крона». Правда чтобы добраться до нее нам придется снять резиновый защитный чехол и заднюю крышку тестера. Внизу красным обведен наш элемент питания, а вверху — плавкий предохранитель, который (я надеюсь) защитит наш измеритель от выхода из строя в случае перегрузки.
Итак, перед тем, как начать пользоваться мультиметром надо правильно подсоединить к нему измерительные “щупы”. Общий принцип здесь следующий: Черный провод (его называют по разному: общий, com, common, масса) это — минус. Мы подсоединяем его к соответствующему гнезду мультитестера с подписью «COM». Красный — в гнездо справа от него, это — наш “плюс”.
Оставшееся свободным гнездо слева — для измерения постоянного тока с пределом до 10-ти ампер (большие токи) и — без предохранителя, о чем свидетельствует предупреждающая надпись «unfused». Так что будьте внимательны — не сожгите устройство!
Также обратите внимание на знак предупреждения (красный треугольник). Под ним написано: MAX 600V. Это — максимально допустимый предел измерений напряжения для данного мультиметра (600 Вольт).
Предупреждение ! Запомните следующее правило: если измеряемые значения напряжения (Вольты) или силы тока (Амперы) заранее неизвестны, то для предотвращения выхода мультитестера из строя устанавливайте его переключатель на максимально возможный предел измерений. И только после этого (если показания слишком малы или — не точны) переключайте прибор на предел, ниже текущего.
Теперь, собственно, — как пользоваться мультиметром и как переключать эти самые “пределы”?
Работать с мультиметром надо с помощью кругового переключателя с указывающей стрелкой. По умолчанию она выставлена в положение «OFF» (прибор выключен). Стрелку мы можем вращать в любом направлении и таким образом “говорим” мультитестеру что именно хотим измерить или — с каким максимальным пределом будем работать.
Тут есть один очень важный момент! Работая с цифровым мультиметром, мы имеем возможность измерять значения как переменного, так и постоянного тока и напряжения.
Сейчас в промышленности и быту в подавляющем большинстве используется переменный ток.
Именно он “течет” по высоковольтным линиям проводов от генераторов электростанций в наши дома, “зажигает” наши лампы освещения и “питает” различные бытовые электроприборы.
Переменный ток, по сравнению с постоянным, намного легче преобразовывать (с помощью трансформаторов) в ток другого (нужного нам) напряжения.
Например: 10 000 Вольт могут быть с легкостью превращены в 220 и совершенно спокойно направлены для нужд жилого дома.
Переменный ток (по сравнению с постоянным) также намного проще “добывать” в промышленных масштабах и передавать его (с меньшими потерями) на большие расстояния.
Пользоваться мультиметром надо, учитывая все сказанное выше. Поэтому, запомните наизусть следующие сокращения:
DCV = DC Voltage — (анг. Direct Current Voltage) — постоянное напряжение ACV = AC Voltage — (анг. Alternating Current Voltage) — переменное напряжение DCA — (анг. Direct Current Amperage) — сила тока постоянного напряжения (в амперах) ACA — (анг. Alternating Current Amperage) — сила тока переменного напряжения (в амперах)
Теперь, — можем учиться пользоваться мультиметром дальше. Приглядитесь к циферблату своего измерителя и Вы обязательно увидите, что он делится строго на две части: одна для измерения постоянного и вторая — переменного напряжений.
Видите — две буквы «DC» в левом нижнем углу на фото выше? Это значит что левее (относительно положения «OFF») мы будем работать с мультиметром, измеряя постоянные значения напряжения и силы тока.
Соответственно правая часть мультитестера отвечает за измерения тока переменного.
Теперь предлагаю Вам сразу закрепить полученные знания на практике. Покажем пример использования мультиметра для замера емкости обычной батарейки для биоса «CR 2032» номиналом 3,3 Вольта.
Помните наше предупреждение красного цвета? Всегда выставлять предел выше, чем измеряемые значения. Мы знаем, что в батарейке — 3,3V и это — ток постоянный.
Соответственно — выставляем на круговом переключателе “предел” измерений по шкале постоянного тока в 20 Вольт.
Добавить ссылку на обсуждение статьи на форуме
РадиоКот >Конкурсы >Поздравь Кота по-человечески 2020! >
Теги статьи: | ОмметрДобавить тег |
Е24-омметр
Что измеряет прибор омметр: измерение сопротивления омметром
С давних пор в электротехнике и радиоэлектронике используются элементы, известные под названием сопротивления. Позднее, это наименование было заменено термином резистор. Все данные и характеристики наносятся на корпус резистора.
Поэтому, когда нужно ответить на вопрос, что измеряет прибор омметр, ответ не вызывает сомнений. Всем известно, что с помощью этих измерительных устройств определяется значение сопротивления. Тем не менее, данные приборы в чистом виде не используются в повседневной жизни.
Они обладают повышенной точностью и применяются в заводских условиях, для того, чтобы точно определить номинал выпускаемых резисторов.
Проверка лампочек накаливания
Не горит лампа в светильника? В чем причина? Поломка может быть в патроне, выключателе или электропроводке. Лампа накаливания, энергосберегающая, лампа дневного света проверяется тестером. Причем сделать это довольно таки просто. Для этого следует установить на тестере ползунок в положение измерения минимального сопротивления и прикоснуться к цоколю концами щупов.
На экране видно, что сопротивление нити накала равно 51 Ом. Это значит, что лампа исправна. Если бы нить была оборвана, на экране показалось бесконечное сопротивление. Автомобильная лампа 12 В и 100 Вт показывает сопротивление в 1,44 Ом. Галогенка на 220 В и 50 Вт выдает 968 Ом.
Нить накала будет показывать меньшее сопротивление в охлажденном состоянии, когда лапа нагрета, этот показатель может увеличиться в несколько раз. Поэтому, зачастую лампы сгорают во время включения. Это потому, что при включении, ток, идущий через нить, превышает допустимый в несколько раз.
Проверка наушников гарнитуры
Бывают проблемы с наушниками, связанные с пропаданием или искажением звука, либо полным его отсутствием. Причиной тому может быть выход наушников из строя либо устройства, с которого принимается сигнал.
Зачем нужно заземление полотенцесушителя в ванной?
При помощи омметра можно установить причину неисправности.
Чтоб проверить наушники, нужно присоединить концы щупов к разъему, через который наушники подключаются к аппаратуре. Обычно, это разъем «Джек 3,5».
Контакт, находящийся в разъеме ближе к держателю общий, фигурный для левого канала, кольцевой, расположенный между ними, для правого.
Один конец щупа преподносим к общему выводу, вторым касаемся поочередно к правому и левому. Сопротивление на обоих концах должно быть равным 40 Ом. Зачастую, в паспорте наушником указаны все параметры.
Если разница в показаниях велика, имеет место быть короткое замыкание. Это легко проверить. Достаточно коснуться щупами к левому и правому каналам одновременно. Сопротивление должно увеличиться в 2 раза, то есть показывать 80 Ом.
Получается, что мы проводим измерение двух последовательно подключенных цепей. Если при шевелении провода сопротивление меняется, провод перетерт в каком-либо месте. Обычно это происходит в месте выхода из излучателей или Джека. Чтоб точно определить место поломки, зафиксируйте провод, изогните его локально, подключив омметр. Если разрыв в месте установки Джека, нужно купить разборной Джек.
Старый придется откусить вместе с частью перетертого провода, припаять контакты к новому разъему по такому принципу, как они припаяны к Джеку. Если обрыв был найден в наушниках, отрежьте старый кусок провода, припаяйте новый к тому мету, где была старая пайка.
Современные мегаомметры
В настоящее время наряду с традиционными, но все еще работоспособными и надежными мегаомметрами, используются электронные аналоговые и цифровые приборы. Они имеют источники тока, это аккумуляторы или гальванические батареи. Использование цифрового табло позволяет более точно проводить измерения и фиксировать их.
Многие модели оснащаются немало важными функциями такими как, например: автоматическое определение коэффициентов абсорбции и поляризации.
Кроме этого, для большего удобства эксплуатации они конструируются с возможностью подсветки экрана, и сохранения измеренных показаний в память прибора с последующей передачей на компьютер, для отслеживания динамики измерений.
Например, цифровой мегаомметр ЦС202-2 может фиксировать в своей памяти до 10 последних измерений. Кроме измерения изоляции, им можно автоматически выполнить определение коэффициента абсорбции. Диапазон замера этим прибором равен от 0 до 200 ГОм.
Измерение номинала резистора
Сопротивления (в цепи их называют резисторами) имеют широкое применение в электросхемах. Зачастую приходить проверять резистор на исправность, чтоб определить поломку электроцепи.
На схеме резистор показывают в виде прямоугольника, иногда внутри есть надпись, которая может свидетельствовать о его мощности. Например, I – 1 Вт и так далее.
Чтоб определить номинал омметром, включите его в режим промера сопротивления. Сектор проверки сопротивления поделен на части. Это сделано с целью повышения эффективности измерений.
К примеру, ползунок «200» свидетельствует о том, что мы можем промерять сопротивление до 200 Ом. «2k» — 2000 Ом и так далее.
«k» свидетельствует о том, что к числу нужно добавить 1000, так как это приставка кило; «М»- мега, следовательно, число умножается на 1000000.
Если установить ползунок на измерения «2k» и при этом измерять резистор номиналом 300 кОм, на дисплей будет выведен значок перегрузки. Значит, нужно установить ползунок в положение 2М. Не важно, в каком положении он установлен, поменять его можно в процессе измерений.
Во время измерений сопротивления тестер может показывать другие показания, но не те, которые указаны на резисторе. Такой резистор не пригоден для дальнейшей эксплуатации.
На современных резисторах имеется цветная маркировка.
Подготовка Омметра для измерений
Ремонт электропроводки, электротехнических и радиотехнических изделий заключается в проверке целостности проводов и в поиске нарушения контакта в их соединениях.
В одних случаях сопротивление должно быть равно бесконечности, например сопротивление изоляции. А в других – равно нулю, например сопротивление проводов и их соединений. А в некоторых случаях равно определенной величине, например сопротивление нити накала лампочки или нагревательного элемента.
Тестер для контроля энергоемкости элементов питания
Внимание! Измерять сопротивление цепей, во избежание выхода из строя Омметра, допускается выполнять только при полном их обесточивании.
Необходимо вынуть вилку из розетки или вынуть батарейки из отсека. Если в схеме есть электролитические конденсаторы большей емкости, то их необходимо разрядить, замкнув выводы конденсатора через сопротивление номиналом около 100 кОм на несколько секунд.
Как и при измерениях напряжения, перед измерением сопротивления, необходимо подготовить прибор. Для этого нужно установить переключатель прибора в положение, соответствующее минимальному измерению величины сопротивления.
Перед измерениями следует проверить работоспособность прибора, так как могут быть плохими элементы питания и Омметр может не работать. Для этого нужно соединить между собой концы щупов.
У тестера стрелка при этом должна установится точно на нулевую отметку, если не установилась, то можно покрутить ручку «Уст. 0». Если не получится, надо заменить батарейки.
Для прозвонки электрических цепей, например, при проверке электрической лампочки накаливания, можно пользоваться прибором, у которого сели батарейки и стрелка не устанавливается на 0, но хоть немного реагирует при соединении щупов.
Судить о целостности цепи будет возможно по факту отклонения стрелки.
Цифровые приборы должны тоже показывать нулевые показания, возможно отклонение в десятых долях омов, за счет сопротивления щупов и переходного сопротивления в контактах подключения их к клеммам прибора.
При разомкнутых концах щупов, стрелка тестера должна установится в точку, обозначенную на шкале ∞, а в цифровых приборах, мигать перегрузка или высвечиваться цифра 1
на индикаторе с левой стороны.
Омметр готов к работе. Если прикоснуться концами щупов к проводнику, то в случае его целостности, прибор покажет нулевое сопротивление, в противном случае, показания не изменятся.
В дорогих моделях мультиметров есть функция прозвонки цепей со звуковой индикацией, обозначенная в секторе измерения сопротивлений символом диода.
Она очень удобна при прозвонке низкоомных цепей, например проводов кабеля витых пар для Интернета или бытовой электропроводки.
Если провод цел, то прозвонка сопровождается звуковым сигналом, что освобождает от необходимости считывать показания с индикатора мультиметра.
Проверка диодов мультиметром или тестером
Если необходимо преобразовать переменный ток в постоянный, применяются полупроводниковые диоды. При проверке платы первое внимание нужно уделить именно им. Они изготавливаются из кремния, германия и других материалов, служащих полупроводниками.
На внешний вид диоды отличаются между собой. Корпус может быть выполнен из пластика, стекла, металла. Они могут быть как цветные, так и прозрачные. Несмотря на это, все они имеют 2 вывода. В схемах ,как правило, применяют светодиоды, стабилитроны, выпрямительные диоды.
Условно их показывают как стрелку, которая упирается в отрезок линии. Диод обозначается буквами VD и только светодиоды обозначают HL. Назначение диодов напрямую зависит от обозначений, которые показываются на чертеже. Из-за того, что схема может включать в себя огромное количество диодов, включенных параллельно, из нумеруют.
Диод легко проверить, если знать его принцип работы. А все просто, это как ниппель. Когда воздух входит, колесо накачивается, но назад уже не выйдет. Такой принцип работы и у диода. Только он пропускает через себя ток. Для проверки его работоспособности нужен постоянный источник питания, в роли которого может быть омметр, тестер, так как они мет батарейки.
На фото показано схема работы тестера при проверке сопротивления. На клеммы поступает напряжение определенного вида полярности. «+» подается на клемму красного цвета, «-» на черную. Когда мы прикоснемся, окажется так, что на анодном выводе будет плюсовой щуп, на катодном — минусовой. Ток начнет движение через диод.
Если перепутать метами щупы, ток не будет двигаться. Диод может быть как пробитым, исправным, так и находиться в обрыве. Когда образовался пробой, в какую бы сторону мы не подсоединили щупы, ток будет проходить через диод. Это все потому, что диод в таком случае будет представлять из себя кусочек провода.
Если произошел обрыв, ток не будет поступать. Редко случается такое, что сопротивление перехода изменяется. Такую поломку легко выявить, глядя на дисплей. По такому принципу можно проверить выпрямительный диод, светодиод, стабилитрон, диод Шоттки. Диоды могут быть как с выводами, так и иметь SMD исполнение. Давайте попрактикуемся.
Сначала вставляем щупы в прибор соблюдая цветовую маркировку. COM – черный кабель, R/V/f — красный, плюс. Далее устанавливаем ползунок на «прозвонку». На фото положение 2kOm. Включаем прибор, сомкнув щупы, убеждаемся в том, что он работает.
Первым делом проверим германиевый диод Д7. Ему уже 53 года. Такие диоды сейчас не производят, так как цена сырья велика, да и малая рабочая температура (max 80-100). Однако они хороши тем, что имеют низкий уровень шумов и малое падение напряжения. Их ценят люди, собирающие ламповые усилители звука.
При прямом подключении падение напряжения равно 0,129 мВ. Стрелочный прибор покажет где-то 130 Ом. Если изменить полярность, показание мультиметра будет равно 1, стрелочный в свою очередь покажет бесконечность. Это значит, что сопротивление слишком большой. Диод исправен.
Диод на кремниевой основе проверяется таким же способом. Корпус имеет 2 вывода катода, которые маркируются точкой, линией или окружностью. При прямом подключении падение равно около 0,5 В. Более мощные диоды покажут приблизительно 0,4 В. Таким способом проверяются диоды Шоттки, падение которых равно 0,2 В.
Мощные светодиоды имеют падение более 2 В, прибор может показать 1. В таком случае светодиод и есть индикатором. Если он светится, даже слабо, значит все исправно.
Некоторые типы более мощных светодиодов сделаны по принципу цепочки. То есть имеют несколько последовательно включенных светодиодов. Внешне это не просматривается. Падение на них может равняться до 30 В, проверять их стоит блоком питания, имеющего соответствующее напряжение и резисторами, включенными в цепь.
Устройство, принцип действия
Работу электрических приспособлений рассмотрим на примере базовых устройств, таких как:
Амперметры
Такие устройства измеряют величину электрического тока. Поскольку показания напрямую зависят от поступаемого электросигнала, сопротивление амперметра должно быть меньше, чем резистивность нагрузки. Это необходимо для неизменной силы заряда при подключении нагрузки. По своим конструктивным особенностям такие электроизмерительные приборы подразделяются на:
- амперметр переменного тока;
- амперметр постоянного тока;
- магнитоэлектрические;
- электромагнитные.
Как амперметр работает? Идеальный амперметр, является прибором для измерения электрозаряда. Представляет собой проводящий контур, закрепленный на оси между полюсами постоянного магнита.
При отсутствии сигнала контура, благодаря давлению пружины, стрелка находится в нулевом положении. При включении устройства, на подвижный элемент поступает токовый импульс – происходит отклонение стрелки на угол, соответствующей величине тока. Таким образом индикаторная шкала показывает значение, измеренное устройством.
Различают модификации: с аналоговой шкалой, с цифровой шкалой. Кроме того, устройства отличаются ценой деления и пределами измерений.
Аналоговый вольтметр переменного тока и цифровые вольтметры
Идеальный вольтметр электроизмерительный, как правило, подключается в цепь параллельно. Сопротивление вольтметра пропорционально поданному на него сигнала. Для того чтобы на показания не влияли искажения электроимпульсов, его резистивность рекомендуется делать как можно больше.
Существуют также цифровые вольтметры, имеющие цифровые индикаторные показания. Принцип работы измерителя напряжения аналогичен токовому измерителю, отличие только в градуировках шкал, пределах измерений и модификациях.
Омметр
Устройство, позволяющее измерить как сопротивление амперметра, так и сопротивление вольтметра. Диапазон измерения:
Подключается такой показывающий элемент в цепь последовательно. Измеряет косвенно величину сопротивления, учитывая значение входящего электрического тока и постоянную величину напряжения.
Приборная шкала каждого электроустрйоства имеет нанесенные условные знаки, обозначающие характеристики прибора, класс точности (например, амперметра), виды рабочих токов, номинальное напряжение и т.п.
Пример современного измерителя сопротивления – омметр Виток, имеющий комбинированное питание.
Классификация и принцип действия
Классификация
- По исполнению омметры подразделяются на щитовые, лабораторные и переносные
- По принципу действия омметры бывают магнитоэлектрические — с магнитоэлектрическим измерителем или магнитоэлектрическим логометром (мегаомметры) и электронные — аналоговые или цифровые
Магнитоэлектрические омметры
- Действие магнитоэлектрического омметра основано на измерении силы тока, протекающего через измеряемое сопротивление при постоянном напряжении источника питания, с помощью магнитоэлектрического микроамперметра. Для измерения сопротивлений от сотен ом до нескольких мегаом измеритель (микроамперметр с добавочным сопротивлением), источник постоянного напряжения и измеряемое сопротивление rx
- включают последовательно. В этом случае сила токаI в измерителе равна:
- I = U/(r0 + rx)
- U
- r0
, где — напряжение источника питания; — сопротивление измерителя (сумма добавочного сопротивления и сопротивления рамки микроамперметра).